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Transferring Ecosystem Simulation Codesto Supercomputers

J. W. SKILES" AND C. H. SCHULBACH

Ames Research Center

Summary

Many computer codes have been devel oped for the simu-
lation of ecological systemsin the last twenty-five years.
This development took place initially on main-frame
computers, then mini-computers, and more recently, on
micro-computers and workstations. Recent recognition of
earth system science as a High Performance Computing
and Communications Program Grand Challenge area
emphasizes supercomputers (both parallel and distributed
systems) as the next set of tools for ecological simulation.
Transferring ecosystem simulation codes to such systems
is not a matter of simply compiling and executing existing
code on the supercomputer, since significant differences
exist between the system architectures of sequential,
scalar computers and parallel and/or vector supercom-
puters. To more effectively match the application to the
architecture and achieve reasonable performance, the
parallelism, if it exists, of the original application must be
exploited. We discuss our work in transferring a general
grassland simulation model (developed on aVAX inthe
FORTRAN computer programming language) to a

Cray Y-MP/C-90. We show the Cray shared-memory
vector architecture and discuss our rationale for selecting
the Cray. We describe porting the model to the Cray and
executing and verifying a baseline version, and we discuss
the changes we made to exploit the parallelism in the
application and to improve code execution. As aresult of
these efforts, the Cray executed the model 30 times faster
than the VAX 11/785 and 10 times faster than a Sun 4
workstation. We achieved an additional speed increase of
approximately 30 percent over the original Cray run by
using the compiler’s vectorizing capabilities and the
machine's ability to put subroutines and functions “in-
ling” in the code. With the modifications, the code still
runs at about five percent of the Cray’s peak speed
because it makes ineffective use of the vector and parallel
processing capabilities of the Cray. By restructuring the
code to increase vectorization and parall€elization, we
believe we could execute the code six to ten times faster
than the current Cray version.

* Johnson Controls World Servi ces, Inc., Cape Canaveral,
Florida.

I ntroduction

Scientistsinvolved in ecosystem studies have used models
for many years. Models help explain processesin ecosys-
tems that cannot be observed or measured explicitly. They
serve to direct study to areas where data and understand-
ing are missing. Further, models allow manipulation of
simulated ecosystems not feasible with the actual system
because of time, budget, or conservation constraints. The
tools for ecosystem modeling, especially computing plat-
forms, were also evolving simultaneoudly.

Ecosystem model development began with the use of
mainframe computational platforms (ref. 1). Models were
submitted to a queue in the form of card decks, executed
in batch, and output returned as hardcopy, hours or days
later. Mini-computers eased the turnaround time between
job executions because they were more affordable. Since
there were more of them, they usually operated in atime-
sharing mode, and they offered greater access to graphic
and peripheral plotting devices.

The advent of the micro-processor brought computing to
theindividual user. Large facilities were no longer neces-
sary for computing, and many specialized output devices
and applications became available for the display of
model output. Ecosystem modelers, over this same period
of time, have continued to demand faster and faster rates
of execution and more and more core or random access
memory (RAM). Supercomputing platforms would seem
to meet these continually rising demands.

Though signs of documentation of supercomputer use are
beginning to appear in the ecological literature (refs. 2-4),
supercomputers, generally located in large facilities, were
bypassed and never fully embraced by the ecosystem
modeling community. (We except here those ecosystem
models that use output from or are linked to global cli-
mate models (GCMs), since many use supercomputers for
execution (refs. 5 and 6).

Bypassing of supercomputers by the ecosystem modeling
community occurred for avariety of reasons: supercom-
puter time is perceived as expensive and difficult to obtain
because of the paperwork needed to open and maintain an
account; supercomputers are alimiting resource for mod-
elersand CPU timeis not always available at accessible
installations; control languages and compilers are often



different from standards in the computer industry and
necessitate the user learning new commands in order to
execute amodel. In addition, network connections used to
transfer code, data, and output between the supercomputer
and the user’ s front-end computer (perhaps a workstation
or desktop computer) are slow, difficult to use, and again
require the user to learn new commands. Finaly, the sup-
posed decrease in execution time of model codesis not
fully realized because of the above considerations and
because the ported code often does not take advantage of
supercomputer architecture.

A growing emphasis on the grand challengesin ecological
modeling is changing the use of supercomputersin the
field. Ecosystem science isincluded in the Earth and
Space Sciences grand challenge areafor NASA in the
High Performance Computing and Communications Pro-
gram (ref. 7). One such grand challenge is determining the
global carbon balance. Models designed for calculating
this balance (ref. 8, for example) use large data sets for
initializing and driving the simulation. Large data matri-
ces holding intermediate and state variables are also main-

tained and manipulated during these simulations, neces-
sitating large amounts of RAM and fast execution timesin
order to perform large numbers of simulation
experiments.

Figure 1 shows the development of computer capabilities
over the last two decades and the projected Earth and
Space Sciences Computing Requirements in terms of
speed and memory. NASA now emphasi zes the use of
supercomputers (both parallel and distributed systems) as
the next tool for ecological simulation and is making
supercomputer platforms more readily available to ecosys-
tem modelers. Ecosystem modelers would benefit from
the use of supercomputers because they could more read-
ily smulate large geographical areas with reasonable
turnaround time; be able to execute large unit time simula-
tions (many days or years) ordinarily taking too much
time on alower-level computing platform; be able to use
large remote sensing data sets to drive the model or use as
validation; and be able to do more model scenario testing
or gaming with fewer real or clock-time constraints.

| Next generation supercomputers |
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Figure 1. Past, present, and predicted earth and space sciences computing requirements displayed as computer speed
versus words of memory. MFLOPS is millions of floating point operations per second; NWP is numerical weather predic-
tion. (Redrawn from J. Bredekamp and J. Harris, NASA Headquarters; personal communication.)



The need for the advanced computational systems shown
in figure 1 may not be apparent now, but the projected
increase in computing capabilities will enable ecologists
to attack problems that are thought to be too large or too
difficult today (ref. 9). For example, statistical mechanical
theories of interacting species have been developed in
community and ecosystem ecology. However, the theories
have had little impact on the discipline because the neces-
sary simplifying assumptions cannot be justified biologi-
cally (ref. 10). The simplifications have been imposed by
computational limitations. The further development of
predictive modelsin the earth and biological scienceswill
continue to strain the capacity of the most powerful com-
puters. These models will require new techniques for
handling wide spatial and temporal scales, stiff systems of
equations, the processing of very large volumes of data,
and advanced distributed data management and informa-
tion systems (ref. 11), aswell as techniques for the visual
presentation of model results.

In this paper, we address the concern of maximizing use
of supercomputer architectures. We use an ecosystem
simulation model (see Ecosystem Model Description sec-
tion) constructed on a Digital Equipment Corporation
(DEC) VAXL mini-computer and tested on several main-
frame computers to standardize the code and to establish
conformity of output. We describe transferring that com-
puter code to a Cray C90 supercomputer. We detail the
obstacles we encountered in this transfer, our solutions,
and the changes in code structure we made in order to
maximize processor use and minimize CPU time.

Assumptions

Before we began this work, we made some assumptions
pertaining to porting existing models to supercomputers.
Thefirst assumption isthat the model performsasit was
designed to perform on lower-level computing platforms.
It makes no sense to move a model to a supercomputer if
it is not functioning properly on the original machine. The
model we used met this criterion.

The next assumption is that the users who are moving the
model have knowledge of the model and of the data
required to execute the model. The users need to know
about the model in order to detect errorsin execution or
output once the model is running on the supercomputer.
The users also need to know how many and what type of
files are required to initialize and execute the model. This
familiarity helps in understanding the input/output (1/0)
data structure(s) utilized and produced by the model.

1Use of trade namesin this paper is for convenience only and
does not imply endorsement by the National Aeronautics and
Space Administration or by the U.S. Government.

Users should have complete output from the model that
was produced on alow-level platform for comparison
before the model is moved to a supercomputer.

The users are also expected to have good documentation
in hand in order to track down output deviations from the
standard output once the model is ported. Too often model
documentation consists of notes and scribbles collected in
aloose-leaf binder, or it resides in the modeler’ s head and
is not available to other users. Good documentation is
especially important if the users doing the porting to a
supercomputer do not have first-hand experience with the
model.

Lastly, we assumed that we would have access to a super-
computing platform. As mentioned above, supercomput-
ing resources are often limited, and we needed to be able
to access the chosen machine over alocal or wide area
network as required.

Earlier drafts of this manuscript benefited from contribu-
tions by Hector D’ Antoni, Christopher Potter, and Don
Sullivan.

Computer Platform Description

When computers were first introduced, they generally fol-
lowed what is now referred to as the “von Neumann”
architecture, after John von Neumann who proposed this
computer architecture in the 1940s (ref. 12). This archi-
tecture consists of a control unit (program counter and
instruction fetcher), the processor (arithmetic and logic
unit), and amemory containing the program and data.
Operations are performed one at atime in the order they
are encountered. Since this method isinherently limited, it
was not long before a number of concepts were proposed
to enhance the speed of execution. The result istoday’s
high performance computers that can process data at
speeds exceeding GFLOPS (billions of floating point
operations per second). These speeds are obtained through
replication of processors and the use of other techniques
(see next section). However, such GFLOPS speeds cannot
be obtained unless applications can make use of the paral-
Ielism of the architecture. In fact, many applications may
achieve only afew percent of the top speed of the super-
computing machine.

We next explain some of the methods for exploiting
parallelism in computer architecture, provide our rationale
for choosing the Cray, and give a short overview of the
architecture of the Cray C90. More detailed information
on computer architecture and the Cray systems can be
obtained from references 13-15.



Parallelism in Computer Architecture

The use of separate processors, introduced to handle input
and output (1/0) functions, was one of the first examples
of parallelism in computer architecture. Later, interleaved
or banked memories were used to improve data access
speed, and independent functional units were created in
which machine functions were assigned to specialized
units able to execute simultaneously. The CDC 7600, for
example, had independent functional units: floating-point
add, long add, floating-point multiply, floating-point
divide, increment, shift, Boolean, normalize, and popula-
tion count. These functional units could be pipelined
aswell.

Pipelining consists of using assembly line techniquesto
increase throughput. Tasks are divided into stages, and
separate pairs of operands occupy different stages simul-
taneously. Figure 2 shows a possible pipeline for floating-
point addition. If each stage of the pipeline requires

10 nanoseconds, then, at the beginning, the first pair of
operands enters the pipe; the next pair enters

10 nanoseconds later, and so on. After 40 nanoseconds,
the first result is produced. Every 10 nanoseconds after
that, another result is produced. Pipeline techniques can
apply not only to the execution of instructions, but to
instruction processing as well. Instruction processing can
be divided into phases such as instruction fetch, instruc-
tion decode, and operand fetch.

Computer systems available in the mid- to late-1960s used
many of the techniques mentioned here to improve pro-
cessing speed. During this period, computer architects
realized that parallelism could be achieved in additional
ways. Flynn (ref. 16) proposed a classification scheme
that related machines and their instructions.

Adjust exponents Stage 1 10 NS
Add mantissas Stage 2 10 NS
Normalize Stage 3 10NS
Round Stage 4 10NS

| * |
Figure 2. Example of a pipeline for floating-point addition.
The operation begins at the upper right.

Flynn’'s Classification Scheme

Figure 3 summarizes Flynn's classification scheme. This
scheme describes the function of a computer system, not
its architecture, but it iswidely used to provide aframe-
work for discussion. A stream is a sequence of items,
either instructions or data, operated on by a processor.
There can be a single stream of instructions or data, or
multiple streams. The von Neumann architectureisin the
single instruction stream, single data stream (SISD)
machine class. All non-von Neumann machines fall into
either the single instruction stream, multiple data stream
(SIMD) or multiple instruction stream, multiple data
stream (MIMD) class because the MISD classis generally
considered empty.

Single Multiple
instruction instruction
stream stream
Single o
data
stream [ D |
Multiple 0
data
stream . . .

Figure 3. Flynn’s taxonomy of computer architecture.

Within the SIMD class, two general types of architecture
occur. The vector, or pipeline, processor represents an
extension of the idea of pipelined functional units. There
isstill only one control unit issuing instructions, but one
instruction can cause an operation to be carried out on a
sequence of elements. The operations are donein a
pipelined manner. The Cray 1 and Cyber 205 computers
are examples of pipelined or vector processors.

The other type of SIMD machineisthe array, or parallel,
processor. It is characterized by replicated processing
elements directly connected to a single common, control
unit. Each processing element has its own registers and
storage. The processors operate in lockstep under control
of the single control unit. Early examples of array proces-
sorsarethe ILLIAC IV and the Massively Parallel Pro-
cessor; amore recent example is the Thinking Machines
Connection Machine CM-2.

The MIMD machines, or multiprocessors, consist of mul-
tiple processors, each obeying its own instructions. As
with SIMD machines, there are two general approaches to
this class: (1) shared memory multiprocessors, and

(2) distributed memory multiprocessors.



In shared memory multiprocessors, a processing element
has a control unit and an arithmetic unit, and the process-
ing elements share acommon memory. There may bea
multi-ported connection to the memory element(s), or the
processing elements may be connected through some sort
of connection network or switching network. The

Cray X-MP, Cray Y-MP, and Cray 2 computers are
examples of this kind of architecture.

With distributed memory multiprocessors, each processor
has its own control unit, memory, and arithmetic unit.
These processors may be connected in avariety of fash-
ions not discussed here. Datais local to a processor, and
communication is via explicit message passing. Examples
of such machines include the Intel iPSC/860, Delta, and
Paragon, and the Thinking Machines Connection
Machine CM-5.

Selecting the Cray Platform

We selected the Cray C90 for our initial effortin

porting and modifying our ecosystem model based on
four considerations: (1) potential vectorization

capability and parallelism with multiple processors,

(2) availahility, (3) ease in porting, and (4) maturity of
software. Although we had other platforms available
(such as the Intel iPSC/860 and Thinking Machines
CM-2), we decided that the Cray would be best for estab-
lishing an initial baseline output and execution

time for the model. Using the Cray would allow usto
invest less time learning the computer system and

more time executing and optimizing the model. The char-
acteristics of Cray systems are well known, and

the software is very mature. Also, many experienced
supercomputer users acknowledge that getting their
codes to run well on a Cray isthefirst step in getting
them to run well on other supercomputers.

Cray Architecture

The Cray 1, the first commercially successful vector pro-
cessor, was delivered to computer usersin 1976. It
included multiple, special purpose, pipelined functional
units that could operate concurrently. The Cray 1 had

8 vector registers, each with 64 64-bit words, aradical
departure from the 16-bit and 32-bit sequential machines
in use at the time. Along with the vector registers were
additional machine instructions for manipulating the vec-
tors as units. Operations took place from one register to
another. The registers received data from and sent data to
main memory using starting location and an increment
(=1). The main memory for the original machines con-
sisted of 1 million words divided into 16 banks that could
operate concurrently. The section on data representation

explains more about the characteristics of Cray floating-
point arithmetic.

The Cray 1 had a specia feature called “chaining” that
helped increase the speed of computation. Chaining pro-
vided the ahility to link vector operations so that they
operated as one continuous pipeline. The result of avector
instruction was fed directly into the pipeline for the next
instruction without waiting for the first instruction to
complete arithmetic on all elements. Thus, once the
chained pipeline was filled, multiple operations were
completed each clock cycle.

The vector operations and the chaining capability resulted
in a peak performance for the Cray 1 of 160 million
floating-point operations per second (MFLOPS). The rate
of 160 MFL OPS assumes that both the multiply and add
functional units could produce aresult each clock cycle
(12.5 nanoseconds).

The Cray C90, the newest of the Cray products, can con-
tain as many as 16 processors and up to 1024 million
words of shared memory (approximately 8 billion bytes).
Each processor of the C90 is a vector processor similar to
the original Cray 1. Data representation and binary
floating-point arithmetic differ very dightly from the
Cray 1. However, there are notable changesin the

Cray C90. It has dual (instead of single) vector pipelines
(dual sets of functional units—add, multiply, reciprocal
approximation) per CPU. Vector registers contain 128
(instead of 64) elements (64-bit words). In addition, the
clock speed is reduced to approximately 4.2 nanoseconds.

The differencesin vector length between the Cray 1
and the C90 mean that the C90 achieves its peak

speed on vectors of length 128 (or multiples thereof)
rather than on vectors of length 64. Ancther difference
isthat twice as many results can be produced per clock
cycle (i.e., 2 adds and 2 multiplies rather than 1 add and
1 multiply for the Cray 1). (Reciprocal approximations are
not counted here.) With the reduced clock cycle time of
4 nanoseconds, a single C90 processor has a peak speed
of approximately 1 GFLOPS. Combining all 16 proces-
sors results in a capability of over 16 GFLOPS.

Ecosystem Model Description

We used the Simulation of Production and Utilization of
Rangelands (SPUR) model (ref. 17) in our work. Itisa
rangeland ecosystem model composed of modules simu-
lating rangeland hydrology, snow accumulation and melt,
plant growth and mortality, and herbivore/plant/soil inter-
actions. The SPUR model has a dynamic hydrology mod-
ule (ref. 18) and a plant growth module (ref. 19). Each
moduleis based on physical processes known to occur in



rangeland ecosystems. SPUR generally operates on a
daily time step, even though some processes are simulated
on shorter time spans and integrated over the entire day.
The model is driven by daily maximum and minimum
temperatures, daily precipitation, daily solar radiation, and
adaily wind value. In the absence of an actual weather
record, the variables can be provided by a stochastic
weather generator (ref. 20). The hydrology module sup-
plies the plant module with soil moisture tension by soil
layer, and the plant component supplies the hydrology
component with leaf areaindex (LAI) (fig. 4). The plant
component explicitly models carbon and nitrogen flux
from the atmosphere through standing green vegetation,
live roots, dead roots, propagules, standing dead vegeta-
tion, soil organic matter, and litter. Nitrogen accounting
also considers mineralization and soil inorganic concen-
trations. In addition, the model includes modules for
domestic and wild herbivore grazing and for rangeland
economics (fig. 4), though we did not use these modules

in this exercise.
Climate
soil 1

nitrogen

water

Domestic | Piomass Plant  |-=— Hvdrolo
animals growth y oy
} forage use LAl
weight -
gain Wwildlife
nitrogen
biomass
—| Economics

Figure 4. Major modules for the SPUR model.

M odel Validation

The SPUR model and model components have been sub-
jected to a number of validation tests. Renard (ref. 21) and
Springer (ref. 18) tested the hydrology module and
reported that SPUR can adequately reproduce seasonal
runoff in arid watersheds. Cooley (ref. 22) evaluated the
snow dynamics in the model and found good agreement
between observed and predicted snow accumulation and
snow melt over three seasons. Skiles (ref. 23) simulated
the growth of the two dominant grasses in the shortgrass
steppe of Colorado and concluded that the plant module
adequately reproduced the biomass production of the
grasses and matched the dynamics of the growing season.
Hanson (ref. 19) showed that the plant-animal interface in
the SPUR model correctly predicted domestic animal

weight gains as afunction of stocking rate for a Colorado
grassland.

SPUR has been successfully used to predict plant biomass
production on pasturesin West Virginia (ref. 24), provide
simulated forage for a modified domestic animal module
(ref. 25), and supply biomass to a grazing behavior model
(ref. 26). A geographic information system (GIS) has been
used with the SPUR plant and hydrology components to
demonstrate that high orders of stream complexity are not
necessary to adequately simulate monthly stream runoff in
Arizona (ref. 27). The SPUR model has also been used to
estimate the effects of climate change on plant and live-
stock production in the Great Plains of North America
(ref. 28) and estimate the effects of climate change and
CO2 increase on small-watershed hydrology (ref. 29).

Ecosystem Model Structure

The model consists of 3,200 lines of FORTRAN codein
43 modules (program, subroutines, and function subpro-
grams). Approximately one-third of the code consists of
non-executabl e records consisting of comment records
and common blocks.

The SPUR model was released in two versions, afield-
scale version and a basin-scale version (ref. 17); we use
exclusively the field-scale version here. This version of
the model can accommodate very large field or pasture
areas (up to hundreds of hectares) or very small areas
(minimum of one meter square). In the field-scale version,
the plant community of up to seven plant species or func-
tional groups covers the field without spatial constraints.

The seven plant species are distinguished one from
another by the 37 physiological and phenological parame-
ters the user inputs to the model. These parameters are a
significant feature of the model because the simulation of
all the species uses the same code with no branching for
different functional groups such as grasses, forbs, or
shrubs. The same istrue for the soil moisture components
of the model. Each of up to nine sites on the field can
have up to nine soil layers (minimum of four). Sail char-
acteristics such as porosity, water holding capacity at dif-
ferent moisture tensions, and layer depth serve to distin-
guish the various layers. The same sections of code are
used to simulate each layer in the soil profile.

Though alarge number of parameters are needed to ini-
tialize the plant component of the model, only about six
per plant species need to be input with any degree of
accuracy (ref. 30). Thus, simulations can be executed for
many locations or situations with the parameters given in
Skiles (ref. 31).



Figure 5 shows the control loop structure for SPUR. The
execution path for assimilation begins with the year loop,
then moves to the month, day, site/field, and soil-layer
loop, respectively. Thus, each inner loop is executed
before the next outer loop is incremented; al soil layer
calculations are done before the site/field loop counter is
increased, for example. These important characteristics
affect the analysis and restructuring of the control loopsin
the original code for export to supercomputers.

Year loop

Month loop

Day loop

Siteffield loop

Soil layer loop

Plant growth loop
Plant carbon module

|: Plant nitrogen module

Figure 5. Control loop structure for the SPUR model. Inner
loops are executed before outer loops.

Characteristics of the Simulated Site

In this exercise, we simulate a shortgrass prairie site
called Pawnee, located approximately 60 km northeast of
Fort Collins, Colorado, at an elevation of 1650 m above
mean sea level. The Pawnee watershed, part of the Central
Plains Experimental Range (CPER) is approximately 40°
north latitude and 104° west longitude.

Average precipitation at the site is about 305 mm per year
(ref. 1); about 70 percent falls during the M ay—September
growing season (ref. 32). Average wind speed, yearlong,
isabout 10 km/hr. Soil parameters for our simulations
were defined for an Ascolon sandy-loam soil profile.

The vegetation is dominated by warm-season, shortgrass
bunch and sod-forming Cy4 plants. Over the long term,
about 700 kg/halyr are produced, but the production may
be 50 percent of that in dry years and 250 percent of that
in wet years (ref. 33). Other components of the vegetation
community include cool-season grasses and forbs, shrubs

and half-shrubs, and cactus (ref. 33). See Appendix 1 for
estimates of production and plant species at the Pawnee
site.

For our work, we configured the SPUR model to include
five functional plant groups characteristic of the short-
grass steppe at Pawnee. These were warm season grasses,
cool season grasses, warm season forbs, cool season
forbs, and shrubs. Parameter values for these functional
groups were obtained from Skiles (ref. 31) and Hanson
(ref. 19).

Basdaline Simulations

We generated a series of simulations using the SPUR
model that produced results allowing us to compare and
eval uate subsequent model output produced by other
computing platforms. The SPUR model was developed on
aDEC VAX 11/750 in the mid-1980s (ref. 17). We used a
VAX 11/785 for our baseline simulations.

A standard run for the SPUR model consisted of simulat-
ing one site for one year with the five plant functional
groups mentioned above. The site soil profile was con-
figured for four soil layers. The weather drivers used were
from an actual wesather record for the same location
beginning in 1971.

The summed month-end biomass amounts generated by
the model are shown in thefirst line of table 1. These
results conform to the monthly trend of the grassland
being simulated, as they show the seasona dynamics of
the community (ref. 34). The amounts are within the norm
for the Pawnee site’s monthly production (see

Appendix 1).

To test the portability of the code, we next executed the
model with the same configuration on five other proces-
sors: amicro-computer with an Intel 80486 processor, a
Sun workstation, a Silicon Graphics, Inc. (SGI) worksta-
tion, aCray Y-MP, and a Cray C90. Summed monthly
biomass generated from each of these experimentsisalso
shown in table 1. In the five-species simulations, cool-
season plants initiated growth in April. The single species
simulations used only the warm-season functional group;
hence, growth was initiated during the warmer month of
June.

As can be seen, the different processors produced differ-
ent biomass amounts, and in some instances these differ-
ences were as much as 50 percent. These cases occurred
mostly in the single-species simulations and in the later
months of the simulations, so the variations in the biomass
differences were small relative to the total amount of
biomass produced. The fact that these differences exist at
al provides the mgjor reason for writing this paper.
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Differencesin Results and Possible Causes

Theresultsin table 1 may be due to differences
between the computer systems in one or more of the
following areas: data representation, computer
arithmetic, compilers, mathematical libraries, and
conversion of data for input and output. When the
differences wereinitially discovered, we first
investigated whether the cause was one of the
differences between FORTRAN IV and FORTRAN 77
(ref. 35). In particular, we noted that the Cray run
produced an overflow on the variable stack. We
re-sized the stack, required static variable allocation,
and specified that all variables be saved upon exit
from subroutines. In the new run, there was no longer
astack overflow, but the Cray results still did not
match those of the test case exactly.

We checked whether DO loop processing affected the
outcome. In FORTRAN 1V, aDO loop is executed at least
once, regardless of whether or not the final value of the
loop control variable is greater than itsinitial value. In
FORTRAN 77, aDO loop is skipped if the ending value
of the loop control variableisless than the initial value.
There were no anomalies in the loop values, and specify-
ing at least one trip through each loop did not have any
effect.

After finding that the new runs till did not produce
results matching the standard run, we examined function
subprograms (e.g., BELL and ATANF) individually to see
if there were any differences in the values they produced.
We determined that, with the same input, the functions
produced the same output on different computing plat-
forms. We examined I F tests that might result in different
branches being taken (for different growing conditions,
not different functional groups). (See Appendix 2 for a
description of each SPUR subroutine and function sub-
program.) We concentrated on the parts of the program
involved in calculating biomass (e.g., subroutines PLGRO,
PLANT, PHOTQ, and NI TE). By examining the number of
calls to a physiological-curve generation subroutine BEL L
on aday-to-day basis, we discovered that, among the
machines, the number of calls on certain days differed.

The following portion of a FORTRAN program modified
from SPUR compares the value RTEMP (an intermediate
variable) to PHYTMR (a state variable).

RTEMP=PHYTML* P
IF (RTEMP .LT. PHYTMR). ..

The values of RTEMP and PHYTMR after 166 days of
growth indicate they are equal to seven decimal places.

PHYTML=3. 115948E+01
P=10.0

RTEMP=3. 115948E+02
PHYTM2=3. 115948E+02

However, while RTEMP and PHYTM2 were equal on the
Cray, RTEMP was less than PHYTM2 on a SUN. An
examination of the SUN representation of RTEMP and
PHYTM showed that the difference occurred in the low-
order three hits, the actual difference being one bit in the
least significant position. Pinpointing the actual calcula-
tion causing the difference in resultsis difficult because
the | F test occurs after many calculations. It does point
out, however, that unexpected results can occur when
using the same code on different computer systems.
Although variation is less common in current machines
because of the adoption of IEEE Standard 754 (ref. 36) in
the mid 1980s, it is especially important to be aware of
data representation differences when porting a code
between different machines.

Data repr esentation— In trying to understand the differ-
ences between machines, it isimportant to understand
how data are represented in computers. Only a few con-
cepts relating to our experiences with the SPUR model are
presented here. Interested readers are referred to Goldberg
(ref. 37) for amore complete explanation of floating-point
arithmetic. Machine-specific information can be found in
Cray (refs. 38 and 39), Levy and Eckhouse (ref. 40), and
Sun Microsystems, Inc. (ref. 41).

To be represented by a computer, a decimal floating-point
number isfirst converted to a binary number. It isthen
stored in a computer word with asign bit and bits repre-
senting the exponent and fraction. It isinterpreted as:

((~1)S9n) x (2exponent-bias) x (0 f) @
where f is the fraction.

Following |EEE Standard 754, a single-precision, 32-bit
computer word would use the leftmost bit2 (bit 31) to
indicate the sign of the fraction, bits 30-23 to represent the
exponent, and bits 22-0 to represent the fraction. The
exponent does not use a signed magnitude representation
but uses arepresentation in which abias is added to the
exponent. Instead of allocating a sign bit to the exponent,
in addition to asign hit for the number, the exponent is
represented as a positive number. However, the upper half
of the exponent range represents positive numbers and the
lower half represents negative numbers. The true value of
the exponent is determined by subtracting the bias. This
representation facilitates the arithmetic process because

2Starti ng from the left, bits are numbered from 31 to O inclusive.



non-negative floating-point numbers can be treated as
integers for comparison purposes (ref. 37).

Twenty-three bits are used to represent the fraction. How-
ever, the |IEEE standard and other representations assume
the high-order bit of the fraction is one when the number
is normalized, and so they do not represent it. This hidden
bit effectively gives 24 bits for representing the fraction.
Thus, the bits of the fraction form a binary number as
follows:

(b2 + (b2 + (b)) +... + (b23)(2‘24)( )
2

where by, represents the nth bit of the fraction. The value
for by is 1if thereisahidden bit. The Digital Equipment
Corporation VAX architecture assumes the binary point is
to the left of the most significant (hidden) bit. IEEE
assumes the binary point is to the right of the most signif-
icant (hidden) bit. Cray does not assume a hidden hit.
Table 2 shows how the Cray and VAX compare to |IEEE
Standard 754 in the representation of single-precision
floating-point numbers. When different representations

are used for floating-point numbers, there are resulting
differencesin range and accuracy.

Computer arithmetic—In addition to differencesin data
representation, differencesin computer arithmetic may
also play arolein producing different results on different
systems. These differences in computer arithmetic are
much harder to determine because the use of compilers
and mathematical librariesis also involved. Fortunately,
|EEE Standard 754 establishes guidelines for computer
arithmetic as well as data representation. However, some
machine architectures (e.g., Cray and VAX) predate the
standard, so it isimportant to understand the standard, and
then to understand how machines deviate from the
standard.

Goldberg (ref. 37) addresses the first issue by providing
an excellent tutorial on the details of floating-point arith-
metic and the |EEE Standard. Machine deviation from the
standard is harder to address because the information on
older machines may be proprietary and/or obscured by the
role of the compiler or mathematical libraries. To address
this problem, several programs are available for determin-
ing a machine’ s compliance with the IEEE Standard.
Press (ref. 42) provides routines for diagnosing machine
parameters. Another tool useful in determining character-
istics of computer arithmetic is a program called

Table 2. Differencesin single precision floating-point data representation on three computing

platforms
Machine VAX IEEE Std. 754 Cray

Sign bit 15 bit 31 bit 63
Exponent bits 147 bits 30-23 bits 6248

Number of bits 8 8 15

Bias 128 127 2048
Fraction bits 6-0, 31-16 bits 22-0 bits 47-0

Number of bits 23 23 48

Hidden bit YES YES NO

Effective number of bits 24 24 48
Approximate range

Maximum 1.7E+ 38 3.4E + 38 2.73E + 2465

Minimum 2.9E -37 1.175E - 38 3.67E — 2466
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“Paranoia’.3 The program checks for adherence to |EEE
Standard 754 by actually performing arithmetic and com-
paring the results to those expected. We ran Paranoiaon
the Cray, VAX, and | EEE-compliant machines and con-
firmed that there are indeed differences in arithmetic.
Appendix 3 contains output from an |EEE-compliant
machine, the Cray, and the VAX.

The output from Paranoia identifies aflaw in the VAX
arithmetic and serious defects in the Cray arithmetic.
These flaws and defects indicate deviations from the |EEE
standard and are not indicators that the machines should
be dismissed as viable computing platforms. However, a
machine's floating point characteristics are of concern to
numerical analysts. Because of the potential impact on
some numerical algorithms, users should be aware of
machine' s floating point characteristics .

Resolution of Discrepancies

From our investigations into the reasons for differencesin
biomass amounts cal culated by the various computing
platforms, we concluded that the discrepancies were
related to how the various machines perform computer
arithmetic and not to program errors or differences
between FORTRAN IV and FORTRAN 77. To date, we
have not made any program changes to accommodate the
differences.

Code Optimization

The Cray architecture offers opportunities for faster exe-
cution time of the SPUR model beyond that resulting
from faster clock speeds. We use the term “ optimization”
for this process of improving execution times by changing
the code configuration. A schematic diagram for the
optimization processis shown in figure 6.

Optimization M ethodology

To be effective, any optimization scheme must have a
goal or an end point. We could have chosen as our goal
the conformation of Cray output with VAX results; we
could have tried to match exactly the biomass production
figures for Pawnee given in Appendix 1. Instead, we
chose as our goal decreased CPU or execution time while
still producing the numbers shown in our initial testing
(table 1). Establishing this criterion isbox A in figure 6.

3Paranoia can be obtained by sending the e-mail message “send
index” to the Internet address netlib@ornl.gov.

A B C
. Determine Locate
ESt?tlb“,Sh »| program »|CPU-intensive
criteria bottleneck code
A
E v D
Determine R
degree of | estrudcture
optimization code

Y F

Quit

Figure 6. Flowchart for optimization of code being ported
to the Cray. Letters above boxes refer to steps in the pro-
cess. See text, pages 11-15, for details.

Establish Criteria

Table 3 shows CPU times for the standard run of the
SPUR model: simulating one site with five plant func-
tional groups for one year (see Baseline Simulation sec-
tion). Timings are approximate; runswere done in an
environment where the machines were used by others dur-
ing the timing runs. The C90 standard run is about
twenty-eight times faster than the VAX standard run and
about ten times faster than the SUN standard run. These
results are consistent with the 30-fold speedup to be
expected in porting a scalar code to a vector processor
machine (ref. 43). We would like to see a speedup of 100
or 200 over aVAX. Thefirst step towards a significant
speedup is to determine the program bottleneck.

Deter mine Program Bottleneck

Cray computer systems offer a suite of toolsto help locate
CPU-intensive and I/O-intensive portions of code

(ref. 44). One of the tools we used was the Hardware Per-
formance Monitor (HPM). HPM is a hardware monitor
introducing very little overhead when used in conjunction

Table 3. Comparison of execution times for the standard
run of the SPUR model

Machine CPU time
VAX 11/785 11.95 sec
SUN 4 (33 MH2) 4.34 sec
Cray C90 (1 processor) 0.43 sec
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with a program. Table 4 shows a portion of the output
HPM produced during a SPUR simulation that was done
for one site, five functional groups, and 100 years. This
shows that SPUR operates at approximately 83 MIPS
(million instructions per second) and 18.8 MFLOPS. The
MIPS value is within the normal range of 20-250 MIPS,
but the MFL OPS value should be between 30 and 1000 on
the C90 (ref. 44). Therelatively high MIPS number, the
very low number of vector floating-point operations, and
the low MFLOPS number indicate that the unmodified
SPUR moddl is clearly not using the full capabilities of
the machine.

Table 4. Portion of HPM output for a SPUR simulation

Operation Number
Million inst/sec (MIPS) 82.96
Floating ops/sec 18.81M
Vector floating ops/sec 0.13M

The higher the number of floating-point operations, the
more vectorized and efficient the code. The low number
for the unmodified SPUR shows that it is a highly sequen-
tial code. Thisisinherent in the application because it was
originally developed for a sequential machine, the DEC
VAX. The ultimate success in speeding up SPUR depends
on how much of the code is vectorizable (or can be made
vectorizable) and how much is sequential. Thisratio is
important in determining how close an application can

20
18 |
16 | Speed up = 1/((1-f)+(f/R))
14 |

Speedup
[
o
T

come to the peak speed of the machine, as Amdahl’s law
shows.

Amdahl’s Law— Amdahl’s Law (ref. 45) isuseful in
understanding why most applications executed on SIMD
or MIMD machines seldom achieve the peak speed of the
machine. For vector/pipelined processors such asthe
Cray, it isimportant to consider the fraction of the code
that is vectorizable. Figure 7 shows the fraction of the
code that must be vectorized to achieve a given speedup,
given different amounts of machine parallelism. On
vector/pipelined machines, machine parallelism equals the
vector speed divided by the scalar speed. Speedup isthe
inverse of the sum of the fraction of unvectorized code
and the fraction of vectorized code divided by the
machine parallelism. As machine parallelism increases, a
larger fraction of the code must be parallelized to achieve
agiven efficiency. On the Cray C90, the ratio of vector
speed to scalar speed is approximately 1020 (ref. 46).
For aratio of 10, 90 percent vectorization of the code
would result in a speedup of approximately 5. (Seeref. 47
for comments on limitations and applications of Amdahl’s
Law.) Unless the ecosystem simulation code can be
highly vectorized, the speed on the supercomputer will
not be afunction of the speed of the vector units, but will
instead be a function of the speed of the scalar units.

L ocate CPU-intensive Code

To locate CPU-intensive code, we again used Cray utili-
tiesto find the subprograms in SPUR that use the most
CPU time (box C, fig. 6). Table 5 shows the top twelve

R = speed of vector unit relative to scalar unit

0 .10 .20 .30 40

.60 .70 .80 .90 1.0

Fraction of vectorized code (f)

Figure 7. Graphical representation of Amdahl’s Law applied to vector processors.

12



Table 5. Example of Flow Trace Statistics showing routines sorted by descending accumulated CPU

time (seconds)

Routine name Total time  Number of calls  Avg.time/call  Percentage  Acccum. percent

BELL 6.42E-01 89,076 7.21E-06 15.83 15.83
DETAI L 6.29E-01 1,826 3.44E-04 15.50 3134
TEMPP 4.97E-01 112,468 4.42E-06 12.26 43.60
PEXP 4.90E-01 68,016 7.20E-06 12.08 55.68
PHOTO 4.35E-01 8,502 5.12E-05 10.74 66.41
PLGRO 4.09E-01 9,130 4.48E-05 10.10 76.51
PLANT 1.87E-01 1,826 1.03E-04 4.62 81.13
FSVPI 157E-01 1 1.57E-01 3.88 85.01
THRESH 1.31E-01 22,886 5.71E-06 3.22 88.23
HYP 1.14E-01 43,213 2.63E-06 2.80 91.03
Nl TE 1.02E-01 10,956 9.29E-06 251 93.54
Sa L 5.49E-02 1,826 3.00E-05 135 94.90

routinesin terms of CPU time, sorted in descending order. PROGRAM NAI'N

As shown in table 5, subprograms BELL, DETAI L, DI MENSI ON

TEMPP, and PEXP account for more than 55 percent of
the execution time for the standard run of SPUR. Of these
four subprograms, DETAI L, which produces daily output,
isthe only one that writesto the output files. The other
three subprograms call intrinsic functions repeatedly and
thereby use extensive amounts of CPU time.

The SPUR model was written so that frequently used sec-
tions of code are placed in subroutine or function subpro-
grams. On many scalar machines, thisresultsin certain
efficiencies. Among them are reducing the length of the
code and decreasing the execution time because extensive
(conditional) branching is avoided.

Using Cray compiler options, it is possible to place sub-
programs within the body of the calling program without
rewriting the code. This, in effect, restructures the code
(box D, fig. 6). Thisiscalled the “in-line” feature. The
Cray memory isvery large relative to scalar machines on
which the code was devel oped, and the efficiencies for
scalar computers actually slow down the speed of
execution. Using the in-line command at compile time, a
function or subroutine subprogram can be placed inside of
the main or calling program. Lesstimeis used by the Cray
moving between modules, and execution time for a
section of code is decreased. In the following conceptual
example of in-line restructuring of the program code, the
first program block contains amain (calling) program and
a subroutine MODULE called by MAI N.

COMMON B, C, X
CALL MODULE (A)

END

SUBROUTI NE MODULE ( A)

COWON B, C, X

DI MENSI ON X( 10000)

A = VALUE

DO | =1, 10000
A=A+B+C* X)

END DO

RETURN

END

The second program block shows the result of the in-line
command with the pertinent parts of MODULE placed in
MAI N.

A = VALUE

DO | =1, 10000
A=A+B+C* X()

END

END
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Note that no rewriting of the code is necessary because
the Cray compiling systems restructure the code. Table 6
shows routines with an in-line factor of one or greater,
sorted by in-line factor. Anin-line factor greater than 1
indicates that aroutine may qualify for in-lining.

Vectorization information is also available from the Cray.
Figure 8 shows a sample of the Cray vectorization output.

The system indicates if |oops were or were not vectorized.

If aloop was not vectorized, information is provided as to
why vectorization does not occur. In the example, the
loop beginning at line 116 was not vectorized because it
contains an inner loop, and only the innermost loops are
vectorized. The inner loop beginning at line 117 was vec-
torized. We used the vectorization information to identify
possibilities for additional vectorization.

Restructure Code

To restructure the code, we first placed a number of rou-
tinesin-line, adding candidate routines fitting the Cray’s
reguirements for in-lining. For example, routines placed
in-line should generally have less than 50 lines of code.
We also examined the vectorization information to
determineif loops should be restructured. Very few rou-
tines were actually structured for vectorization. We did
not restructure the loops of this program because the loop
control variables were similarly-sized, with actual value
depending on user input.

We examined the possibility of unrolling loops, removing
nested |F statements, assigned GOTO's, backward trans-
fers within loops, and recursion as possible methods to
speedup code (ref. 48). We determined that significantly
improving vectorization of the SPUR model would mean
asubstantial reworking of the loops controlling the simu-
lated time and location of the simulation (fig. 5).

Deter mine Degr ee of Optimization

Asseenintable 7, by placing subroutine and function
subprograms in-line, our restructuring of the SPUR model
resulted in a 30 percent speedup of execution for a

100 year run over the unmodified version of SPUR. We
achieved this speedup on a single processor of the

Cray C90. We ran the model for 100 years so that the
execution times would be larger; we ran the model for one
site and then for nine sites. To ascertain if we could
improve vectorization by more fully using the allocated
arrays, weran a nine-site case; however, the number of
MFLOPS did not increase much over the one-site
case.This net increase did not give us the factor of
100200 we desired because the amount of vectorization
was not substantially increased (the average vector length
was between 3 and 12, not close to the optimum of 128).
Since our simple restructuring was not enough to increase
the vector length, substantial reworking will be needed to
improve the code execution.

Table 6. Example of Flow Trace Statistics showing routines sorted by descending in-line factor

Routinename  Total time  Number of calls  Avg.time/call  Percentage Acccum. percent In-line factor
TEMPP 4.97E-01 112,468 4.42E-06 12.26 12.26 105.99
HYP 1.14E-01 43,213 2.63E-06 2.80 15.07 68.45
BELL 6.42E-01 89,076 7.21E-06 15.83 30.90 51.49
PEXP 4.90E-01 68,016 7.20E-06 12.08 42.98 39.36
THRESH 1.31E-01 22,886 5.71E-06 322 46.20 16.71
ATANF 2.89E-02 9,130 3.16E-06 0.71 46.91 12.02
CRACK 2.51E-02 7,304 3.44E-06 0.62 47.53 8.86
NI TE 1.02E-01 10,956 9.29E-06 251 50.04 4,92
ALBEDO 5.78E-03 1,826 3.17E-06 0.14 50.18 2.40
FLDHYD 1.00E-02 1,826 5.50E-06 0.25 50.43 1.38
DAYREP 1.27E-02 1,826 6.96E-06 0.31 50.74 1.09
EVAPR 1.33E-02 1,826 7.26E-06 0.33 51.07 1.05
PHOPER 1.39E-02 1,826 7.60E-06 0.34 51.41 1.00
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1882 116. S S S S -------- < DO 60 NC2 = 1, NSI TE

1883 117. S S S S Ver----- < DO 60 L = 1, NCP

1884 118. S S S S V------- > 60 IF(FIX(NC2,L) .EQ 0.0)SM= SM+ Q@(NC2, L)
1885 119. S S S S -------- < DO 70 NC2 = 1, NSI'TE

1886 120. S S S S Ve------ < DO 70 L = 1, NCP

1887 121. S S S S V------- > 70 IF(FIX(NC2,L) .EQ 0.0)@(NC2,L) =@(NC2,L) + Q(NC2, L)
1888 122. S S 'S + * X/ SM

1888 123. S S S SUM = 1.0

1889 124. S S S IT=1T+ 1

1890 125. S-S Se-----c---- > IF(IT .LE.( NCP * NSITE + 1)) GO TO40

1891 126. S Se---------- > 80 CONTI NUE

cft77-8035 cf77: VECTOR NTRFC, Line = 116, File = spur2.f, Line = 1882
Loop starting at line 116 was not vectorized. It contains an inner |oop

cft77-8004 cf77: VECTOR NTRFC, Line = 117, File = spur2.f, Line = 1883
Loop starting at line 117 was vectorized.

cft77-8035 cf77: VECTOR NTRFC, Line = 119, File = spur2.f, Line = 1885
Loop starting at line 119 was not vectorized. It contains an inner |oop

cft77-8004 cf77: VECTOR NTRFC, Line = 120, File = spur2.f, Line = 1886

Loop starting at line 120 was vectori zed.

Figure 8. Sample vectorization information.

Table 7. The degree of optimization achieved using the in-line tool for 100-year model runs using the
Cray C90 (1 CPU). The subroutines placed in-line were BELL, PEXP, TEMPP, THRESH, HYP, ATANF,
CRACK, ALBEDO, and PHOPER

CPU-time, sec FLOPS Vector FLOPS Percent speedup
5 species, 1 site
SPUR 32.30 18.81M 0.13M
SPUR w/in-line 25.26 22.91M 0.44M 27.87
5 species, 9 sites
SPUR 226.54 19.46M 0.11M
SPUR w/in-line 175.30 24.00M 0.50M 29.23

Future Plans

We believe that SPUR and models like SPUR would be
more useful if larger versions with increased dimensions
could be run. A thousand-time speedup of the SPUR
model execution was not realized because code written for
use on scalar machines does not take advantage of the
specialized functional units of a supercomputer (ref. 43).
Our efforts so far reveal that substantial restructuring of
the code will be needed, and that merely porting the code
to anew platform isinsufficient. We plan to vectorize and
parallelize the SPUR model to gain thisincrease.

Figure 5 shows the control loop structure for the SPUR
model. The site calculations can be done independently so

that up to nine sites can be evaluated simultaneously. In
addition, the plant growth loop calculations can be done
independently for each plant species so that up to seven
species can be evaluated independently. By parallelizing
these calculations, it should be possible to evaluate a
7-species, 9-site model in the same time as a 1-species,
1-site model. Executions of the current version of the code
indicate that parallelizing could result in a 6-times
speedup in execution time. We predict that even better
improvements are possible in spite of overhead introduced
by the parallelization. The restructuring would also
improve input/output speed, increase vectorization, and
remove obsolete coding elements. In addition, we plan to
modernize the code by integrating the model into a dis-
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tributed heterogeneous computing environment; produc-
ing two-dimensional and three-dimensional graphical
output; and modifying the model to use input from
remote-sensing databases and/or real time sensor
information.

Summary and Conclusions

Many computer codes simulating ecosystems and ecosys-
tem processes have been developed over the last two
decades (ref. 49). The computers used to build and test
these models have generally been those available at the
time of development. However, the use of supercomputers
in ecosystem simulation has been small because these
machines are not readily available and are difficult to
learn to use. In addition, according to Thromborson

(ref. 43), many codes only achieve a 30-fold speedup that
does not make supercomputer use cost-effective. Our
results are consistent with this figure, but we differ with
Thomborson's contention that codes originally devel oped
on scalar machines are not worth the time to modify for
execution on supercomputers. We believe that many
ecosystem model codes would be more useful if larger
models could be run in a shorter period of time, allowing
more alternatives to be simulated and more complex ques-
tionsto be answered. Supercomputers can immediately
accomplish these abjectives, and in the long-term will
enable more effective execution on the workstations that
may eventually replace them.

Supercomputers may not be as cost-effective as worksta-
tions in some cases. However, if supercomputers are
available, they offer the opportunity to begin modernizing
codes originally developed on scalar machines such asthe
VAX. The definition of what constitutes a supercomputer
changes over time; capabilities of a supercomputer today
may be available on the desk top within a decade (ref. 50).
Further, as shown in figure 1, the definition of a super-
computer changes along with the requirements of the user
community and the increased power of the machine. What
is defined as a supercomputer today may appear as a desk-
top computer tomorrow, complete with the vectorization
and parallelization capabilities previously limited to
supercomputers. For codes to run well on the future desk-
top, they will have to be restructured in the same ways as
they now have to be restructured for supercomputers.

To begin amajor restructuring effort, the user should have
astable model and areference or standard run available to
compare output between results generated on a supercom-
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puter and results produced by the machine used to
develop the code. Because of possible differencesin com-
puter arithmetic between platforms, the user should be
aware that results produced on a supercomputer can vary
from those produced by the reference machine. Conse-
quently, users should establish the amount of difference
they are willing to accept between the results from the
supercomputer execution and the standard run.

The supercomputer vendor often suppliestools and tech-
niques to optimize computer code. It isimportant that the
user be aware of these tools and learn to apply them
where appropriate. In our experience, the in-line com-
mands reduced the execution time of our code. This tech-
nique is fully documented in the manuals supplied by the
vendor.

Other more direct techniques for computer code optimiza-
tion may be found in Bently (ref. 51), and a further dis-
cussion of ecosystem code optimization may be found in
Loehle (ref. 52). These techniques include writing the
code to avoid double precision (on the Cray, the word
length islarge, so thisis generally not a problem); using
reciprocal multiplication instead of division; making the
shorter loops the outer loops in nested tasks, and minimiz-
ing the 1/0O in the code. In the SPUR model, reports are
generated from information stored in scratch filesand
COMMON blocks and written from one subroutine. The
user can turn on write statements in other parts of the code
with switch options at execution time, but our experience
indicates this does not measurably increase execution time
on the Cray.

It isimportant for ecosystem model ers to use tools at hand
now. These are the supercomputer-class machines, among
them the Cray C90. New and innovative ways of using
existing workstations in networks so that they have much
of the speed and other resources of a supercomputers are
being explored (ref. 53). Programming and control lan-
guages are being designed so that by using these tech-
niques much of the coding of modelsisinherently vector-
ized during the model construction (ref. 54). Thiswill
lead to ecosystem simulation codes ready for use on
supercomputing platforms from their inception.

Meanwhile, the modification and execution of ecosystem
simulation codes on supercomputers can be realized,
enabling more complex systemsto be simulated and
increasingly complex questions to be asked of ecosystem
simulation codes originally constructed on scalar
computers.
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Appendix 1
Pawnee Plant Production

Estimates for biomass and production at the Pawnee loca
tion given in this appendix are from Sims et al. (ref. 33),
Sims and Singh (refs. 34 and 55), and Innis (ref. 1).

Studies of long-term total aboveground standing crop bio-
mass and of aboveground net primary production show
these grazinglands to produce about 700 kg/ha ranging,
over afew years, from 50 percent lower to 50 percent
higher. Warm-season grasses, the dominant forage plants,
have aboveground net primary production of about 400 to
800 kg/ha over a series of afew years. Shrub and half-
shrub production may vary from about 200 to 750 kg/ha
over afew years interval.

Over severa years, using different treatments (ref. 56),
the average standing crop biomass of aboveground
vegetation (live and dead materia) is about 2590 kg/ha.
Some 43 percent of the vegetation comes from succulent
species (primarily Opuntia polyacantha) and 57 percent
from non-succulent plants. Only 1 percent of the standing
crop biomass is from legumes, with 99 percent from non-
leguminous plants. Some 8 percent of the standing crop
biomassis contributed by annual plant species, whereas

92 percent originates from perennial plant species. Of the
total standing crop biomass aboveground, 42 percent are
contributed by grasses and grasslike plants, 16 percent by
forbs (herbaceous, non-gramineous plants), 19 percent by
shrubs and half-shrubs, and 42 percent by succulents.
These values include both current-year’s live, current-
year's dead, perennial live, and old dead plant materials.

From a standing crop biomass standpoint, the most
important species is Opuntia polyacantha with a mean of
1060 kg/ha, followed by Bouteloua gracilliswith

520 kg/haand Artemisia frigida with 480 kg/ha. Plant
species whose standing crop biomassisin the range of 50
to 100 kg/hainclude, in order of decreasing importance,
Psoralea tenuiflora, Sphaeral cea coccinea, Gutierrezia
sarothrae, and Gura coccinea. Plant species whose
standing crop biomassisin the range of 25 to 50 kg/ha
include Bucloe dactyloides, Chrysopsis villosa, and
Aristida longiseta. Plant species contributing a significant
amount of standing crop biomass (up to 25 kg/ha) include
the following in order of decreasing importance: Carex
eleocharis, Conyza canadensis, Salsola kali, Sitanion
hystrix, Lepidium densiflorum, Plantago patagonica,
Soorobolus cryptandrus, Lappula redowski, and
Orobanche ludoviciana.
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Appendix 2
SPUR Modules

The modules below are for the SPUR Field-Scale Version,
Phase I, grassland ecosystem model. Each moduleis
identified as a main program, subroutine subprogram, or
function subprogram. The purpose of each moduleis
given, as are names of the modules calling the module and
the modules called.

PROCGRAM FSVPI  (main calling program) calls
ALBEDO, DAYREP, DETAI L, ERR, FLDHYD, | OSET,
LI NE, NDPM PACK19, PLANT, SOLADJ, TLAPSE,
USER, and YRREP, and is called by no subprograms.

The subroutine subprograms and function subprograms
below arelisted in alphabetical order.

SUBROUTI NE ADPL determines the shape of the areal
depletion curve and calls no subprograms; ADPL is called
buy USER.

SUBROUTI NE AESC19 computes the areal extent of
snow cover; AESC19 calls no subprogramsand is called
by PACK19 and USER.

FUNCTI ON ALBEDO determines albedo for snow
covered fields; ALBEDO calls no subprograms and is
called by FSVPI .

SUBROUTI NE ANI MAL controls execution of the
wildlife and livestock subprograms; ANl MAL calls
LVSTK and W.DLF, and is called by PLANT.

FUNCTI ON ATANF calculates plant physiological
response based on the arctanget function; ATANF calls no
subprograms and is called by PLGRO.

FUNCTI ON BELL calculates plant physiological
response based on a bell-shaped function; BELL callsno
subprograms and is called by NI TE, PEXP, and PLGRO.

SUBROUTI NE CRACK allows part of the water entering
asoil layer to seep through the cracks in the layer; CRACK
calls no subprograms and is called by SOl L.

SUBROUTI NE DAYREP writes daily values of plant
biomass and animal weight; DAYREP callsLI NE and is
called by FSVPI .

SUBROUTI NE DETAI L controls output via print
switches, DETAI L calls no subprograms and is called by
FSVPI , LVSTK, PLANT, and SO LM

SUBROUTI NE ERR reports error codes passed to this
subprogram; ERRis called by FSVPI and USER.

SUBROUTI NE EVAPR computes plant and soil evapo-
ration; EVAPR calls no subprograms and is called by
SA L.

SUBROUTI NE FLDHYD computes surface runoff from a
site; FLDHYD calls SO L and iscalled by FLDHYD.

SUBROUTI NE GROW computes the physiological
growth of a steer; GROWCcalls no subprogramsand is
called by LVSTK.

FUNCTI ON HYP calculates plant physiological hyper-
bolic response curve; HYP calls no subprograms and is
called by NI TE and PLGRO.

SUBROUTI NE | OSET reads data file names and opens
appropriate logical unit devices; | OSET calls no subpro-
gramsand iscalled by FSVPI .

SUBROUTI NE LI NE adjusts page contentsfor aline
printer; LI NE calls no subprograms and is called by
FSVPI , DAYREP, USER, and YRREP.

SUBRQUTI NE LVSTK controls livestock routines;
LVSTK calls DETAI L, GROW and NTRFC, and is called
by ANI VAL.

SUBROUTI NE MELT19 computes surface melt based
on 100 percent snow cover and non-rain conditions;
MELT19 calls no subprograms and is called by PACK19.

SUBROUTI NE NDPM returns the number of daysin each
month of the current year; NDPMcalls no subprograms
and iscalled by FSVPI .

SUBROUTI NE NI TE calls BELL and HYP and is called
by PLGRO.

SUBROUTI NE NTRFC interfaces plant and animal
components in the model; NTRFC callsZEROand is
called by LVSTK and W.DLF.

SUBROUTI NE PACK19 executes snow accumulation

and melt module for one computational period; PACK19
calls AESC19, MELT19, ROUT19, and ZEROL9 and is
called by FSVPI .

SUBROUTI NE PERC allows part of the water stored in

asoil layer to percolate out of the layer; PERC calls no
subprogramsand iscalled by SOl L.
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FUNCTI ON PEXP calculates expected photosynthesis
by plant species by photoperiod; PEXP calls BELL and is
called by PHOTO.

FUNCTI ON PHOPER calculates photoperiod of a day
based on time of year; PHOPER calls no subprograms and
iscalled by PLANT.

SUBROUTI NE PHOTO calculates actual photosynthesis
by plant species; PHOTOcalls PEXP and TEMPP and is
called by PLGRO.

SUBROUTI NE PLANT controls plant module compo-
nents; PLANT calls ANI MAL, DETAI L, PHOPER,
PLGRO, SO LM and TEMPP and is called by FSVPI .

SUBROUTI NE PLGRO controls plant growth functions;
PLGROcalls ATANF, BELL, HYP, NI TE, PHOTQ,
TEMPP, and THRESH and is called by PLANT.

SUBROUTI NE ROUT19 routes excess water through the
snow cover; ROUT19 calls no subprograms and is called
by PACK19.

SUBROUTI NE SO L distributes evaporation and rain-
fall excessto the various soil layers; SO L calls CRACK,
EVAPR, and PERC and is called by FLDHYD.

SUBROUTI NE SO LC determines the moisture charac-
teristic function for each layer for each site; SO LCcalls
no subprograms and is called by USER.

SUBROUTI NE SO LM calculates soil water potentials

for each layer given soil water for each layer; SO LM
calls DETAI L andis called by PLANT.
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FUNCTI ON SOLADJ adjusts solar radiation input for
slope, aspect, and day of the year; SOLADJ calls no sub-
programs and is called by FSVPI .

FUNCTI ON TEMPP calculates soil temperature profile;
TEMPP calls no subprograms and is called by PHOTO,
PLANT, and PLGRO.

FUNCTI ON THRESH calculates plant physiological
threshold response; THRESH calls no subprograms and is
called by PLGRO.

FUNCTI ON TLAPSE calculates temperature lapse due
to atitude; TLAPSE calls no subprograms and is called by
FSVPI.

SUBROUTI NE USER istheinitialization and initial val-
ues output subprogram; USER calls ADPL, AESCL19,
ERR, LI NE, and SO LCand iscalled by FSVPI .

SUBRQUTI NE W.DLF controlswildlife; W.DLF cals
NTRFC and iscalled by ANI MAL.

SUBROUTI NE YRREP writes annual and monthly
reports; YRREP callsLI NE and is called by FSVPI .

SUBROUTI NE ZERO zeros amatrix in the domestic
herbivore subroutines; ZERO calls no subprograms and is
called by NTRFC.

SUBROUTI NE ZEROL9 setsall carry-over valuesto no
snow conditions for the snow operation; ZEROL9 calls no
subprograms and is called by PACK19.



Appendix 3
Paranoia Output

| EEE Standard 754 Machine Output from Run of Paranoia, Single Precision

Is this a programrestart after failure (1)
or a start fromscratch (0) ?
A Paranoid Programto Di agnose Floating-point Arithmetic

Si ngl e- Preci sion Version ...
Lest this programstop prenaturely, i.e. before displaying
“End of Test”
try to persuade the conputer NOT to term nate execution
whenever an error such as Over/Underfl ow or Division by
Zero occurs, but rather to persevere with a surrogate val ue
after, perhaps, displaying some warning. |f persuasion
avai |l s naught, don't despair but run this program anyway
to see how nany mlestones it passes, and then run it
again. It should pick up just beyond the error and
continue. If it does not, it needs further debugging.

Users are invited to hel p debug and augnent this program
so that it will cope with unanticipated and newy found
conpilers and arithmetic pathol ogi es.

To continue diagnhosis, press return.
D agnosis resunmes after milestone # 0, ... page 1

Pl ease send suggestions and interesting results to
Ri chard Kar pi nski
Comput er Center U 76
University of California
San Franci sco, CA 94143-0704
USA

In doing so, please include the follow ng infornmation:
Preci si on: Single;
Version: 31 July 1986;
Conput er:

Conpi | er:
Optim zation |evel:

O her relevant conpiler options:

To continue diagnosis, press return.
Di agnosi s resunmes after nmilestone # 1, ... page 2

BASI C version (C) 1983 by Prof. W M Kahan.
Translated to FORTRAN by T. Quarles and G Tayl or.
Modi fied to ANSI 66/ ANSI 77 conpati bl e subset by
Dani el Feenberg and David Gay.

You may redistribute this programfreely if you
acknow edge t he source.
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Runni ng this program should reveal these characteristics:

b = radix ( 1, 2, 4, 8, 10, 16, 100, 256, or ... )

p = precision, the nunber of significant b-digits carrled.
u2 = b/b*p = one ulp (unit in the last place) of 1.000xxx..
ul = 1/b”p = one ulp of nunbers a little |l ess than 1.0.

To continue diagnosis, press return
Di agnosi s resunes after nmilestone # 2, ... page 3

gl, g2, g3 tell whether adequate guard digits are carried,
=yes, 0 =no; gl for nult., g2 for div., g3 for subt.
rl,r2,r3,r4 tell whether arithnetic is rounded or chopped;
O=chopped, 1=correctly rounded, -1l=sone other rounding;
rl for mult., r2 for div., r3 for add/subt., r4 for sqgrt.
s=1 when a sticky bit is used correctly in rounding; else s=0
u0 = an underfl ow t hreshol d.
e0 and z0 tell whether underflow is abrupt, gradual or fuzzy
v = an overfl ow threshol d, roughly.
vO tells, roughly, whether infinity is represented.
Conpari sons are checked for consistency with subtraction
and for contanination by pseudo-zeros.
Sqrt is tested. so is y*x for (nostly) integers x .
Extra-preci se subexpressions are reveal ed but not yet tested.
Deci mal - bi nary conversion is not yet tested for accuracy.

To continue diagnosis, press return
Di agnosi s resunmes after nilestone # 3, ... page 4

The program attenpts to discrinnate anong
>FLAWS, like lack of a sticky bit,
>SERI QUS DEFECTs, like lack of a guard digit, and
>FAI LUREs, like 2+2 =5

Fai l ures may confound subsequent di agnoses.

The di agnostic capabilities of this program go beyond an
earlier programcalled “Machar”, which can be found at the
end of the book “Software Manual for the Elenmentary Functions
(1980) by W J. Cody and W Waite. Although both prograns
try to discover the radix (b), precision (p) and

range (over/underflow thresholds) of the arithnetic, this
programtries to cope with a wider variety of pathol ogi es
and to say how well the arithnmetic is inplenented.

The programis based upon a conventional radix
representation for floating-point nunbers,

but also allows for logarithm c encoding (b = 1)

as used by certain early wang nachi nes.

To continue diagnosis, press return
Di agnosis resunes after nmilestone # 7, ... page 5

Programis now RUNNI NG tests on small integers
-1, 0, /2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O K
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Searching for radi x and precision..

Radi x = 2

Closest relative separation found is 5.96046448E-08
Recal cul ating radi x and precision

confirns cl osest relative separation

Radi x confirned.

The nunber of significant digits of radix 2. is 24.00
Test for extra-preci se subexpressions:

Subexpressi ons do not appear to be cal cul at ed

with extra precision.

To continue diagnosis, press return
Di agnosi s resunes after nilestone # 30, ... page 6

Subtracti on appears to be normalized as it shoul d.
Checking for guard digits in multiply divide and subtract.
These operations appear to have guard digits as they shoul d.

To continue diagnosis, press return
Di agnosi s resunes after nilestone # 40, ... page 7

Checking for rounding in nultiply, divide and add/subtract:
Mul tiplication appears to be correctly rounded.

Di vi sion appears to be correctly rounded.

Add/ subtract appears to be correctly rounded.

checking for sticky bit:

Sticky bit appears to be used correctly.

Does nultiplication commute? Testing if x*y = y*x for 20 random pairs:

No failure found in 20 randomy chosen pairs.

Runni ng tests of square root..

Testing if sqgrt(x*x) = x for 20 integers x.
Found no di screpanci es.

Sqrt has passed a test for nonotonicity.
Testing whether sqgrt is rounded or chopped:
Square root appears to be correctly rounded.

To continue diagnosis, press return
Di agnosis resunmes after nilestone # 90, ... page 8

Testing powers z"i for small integers z and i
Start with 0.**0 .
No di screpanci es found.

Seeki ng underfl ow threshold and m n positive nunber:

Smal | est strictly positive nunber found is mnpos = 1.40129846E- 45
Si nce conparison denies MNPCS = 0

evaluating ( MNPCS + MNPCS ) / M NPCS shoul d be safe
what the machine gets for ( MNPCS + MNPCS ) / MNPCS is

0. 2000000E+01

This is O K provided over/underfl ow has not just been signal ed.
Underflow is gradual; it incurs absolute error =

(roundoff in underflow threshold) < m npos.
The underflow threshold is 0.11754945E-37 , bel ow whi ch
calculation nmay suffer larger relative error than nerely roundoff.
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To continue diagnosis, press return
Di agnosi s resunes after nilestone # 130, ... page 9

since underfl ow occurs below the threshold =
( 2. 00000000E+00)~( -1.26000000E+02) |,
only underflow should afflict the expression
( 2. 00000000E+00)~( -2.52000000E+02) ;
actually calculating it yields
0. 00000000E+00
This conmputed value is O K
Testing x"((x+1)/(x-1)) vs. exp(2) = 0.73890557E+01 as x -> 1.
Accuracy seens adequat e.
Testing powers z"q at four nearly extrene val ues:
No di screpanci es found.

To continue diagnosis, press return
Di agnosi s resunes after mlestone # 160, ... page 10

Searching for overflow threshol d:
Can “ z = -y “ overflow? trying it ony = Infinity

Seens O K
Overflow threshold is v = 3.40282347E+38
Overflow saturates at sat = Infinity

No overflow should be signaled for v*1 =
3.40282347E+38
nor for v/i1 =
3. 40282347E+38
Any overfl ow signal separating this * fromone above is a DEFECT.

To continue diagnosis, press return
Di agnosi s resunes after mlestone # 190, ... page 11

What messages and/or val ues does division by zero produce?
About to conpute 1/0...

Trying to conpute 1/0 produces Infinity

About to conpute 0/0..

Trying to conmpute 0/0 produces NaN

To continue diagnosis, press return
Di agnosi s resunes after mlestone # 220, ... page 12

No failures, defects nor flaws have been di scovered.

Roundi ng appears to conformto the proposed | EEE standard P754
The arithmetic di agnosed appears to be Excellent!

End of Test.
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Cray Output from Run of Paranoia, Single Precision

Is this a programrestart after failure (1)
or a start fromscratch (0) ?
A Paranoid Programto Di agnose Floating-point Arithmetic

Si ngl e- Preci sion Version ...
Lest this programstop prenaturely, i.e. before displaying
“End of Test”
try to persuade the conputer NOT to term nate execution
whenever an error such as Over/Underfl ow or Division by
Zero occurs, but rather to persevere with a surrogate val ue
after, perhaps, displaying some warning. |f persuasion
avai |l s naught, don't despair but run this program anyway
to see how nany milestones it passes, and then run it
again. It should pick up just beyond the error and
continue. If it does not, it needs further debugging.

Users are invited to hel p debug and augnent this program
so that it will cope with unanticipated and newy found
conpilers and arithmetic pathol ogi es.

To continue diagnhosis, press return.
D agnosis resunmes after milestone # 0, ... page 1

Pl ease send suggestions and interesting results to
Ri chard Kar pi nski
Comput er Center U 76
University of California
San Franci sco, CA 94143-0704
USA

In doing so, please include the follow ng infornmation:
Preci sion: Single;
Version: 31 July 1986;
Conput er:

Conpi | er:
Optim zation |evel:

O her relevant conpiler options:

To continue diagnosis, press return.
Di agnosi s resunmes after nmilestone # 1, ... page 2

BASI C version (C) 1983 by Prof. W M Kahan.
Translated to FORTRAN by T. Quarles and G Tayl or.
Modi fied to ANSI 66/ ANSI 77 conpati bl e subset by
Dani el Feenberg and David Gay.

You may redistribute this programfreely if you
acknow edge t he source.
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Runni ng this program should reveal these characteristics:

b = radix ( 1, 2, 4, 8, 10, 16, 100, 256, or ... )

p = precision, the nunber of significant b-digits carrled.
u2 = b/b*p = one ulp (unit in the last place) of 1.000xxx..
ul = 1/b”p = one ulp of nunbers a little |l ess than 1.0.

To continue diagnosis, press return
Di agnosi s resunes after nmilestone # 2, ... page 3

gl, g2, g3 tell whether adequate guard digits are carried,
=yes, 0 =no; gl for nult., g2 for div., g3 for subt.
rl,r2,r3,r4 tell whether arithnetic is rounded or chopped;
O=chopped, 1=correctly rounded, -1l=sone other rounding;
rl for mult., r2 for div., r3 for add/subt., r4 for sqgrt.
s=1 when a sticky bit is used correctly in rounding; else s=0
u0 = an underfl ow t hreshol d.
e0 and z0 tell whether underflow is abrupt, gradual or fuzzy
v = an overfl ow threshol d, roughly.
vO tells, roughly, whether infinity is represented.
Conpari sons are checked for consistency with subtraction
and for contanination by pseudo-zeros.
Sqrt is tested. so is y*x for (nostly) integers x .
Extra-preci se subexpressions are reveal ed but not yet tested.
Deci mal - bi nary conversion is not yet tested for accuracy.

To continue diagnosis, press return
Di agnosi s resunmes after nilestone # 3, ... page 4

The program attenpts to discrinnate anong
>FLAWS, like lack of a sticky bit,
>SERI QUS DEFECTs, like lack of a guard digit, and
>FAI LUREs, like 2+2 =5

Fai l ures may confound subsequent di agnoses.

The di agnostic capabilities of this program go beyond an
earlier programcalled “Machar”, which can be found at the
end of the book “Software Manual for the Elenmentary Functions
(1980) by W J. Cody and W Waite. Although both prograns
try to discover the radix (b), precision (p) and

range (over/underflow thresholds) of the arithnetic, this
programtries to cope with a wider variety of pathol ogi es
and to say how well the arithnmetic is inplenented.

The programis based upon a conventional radix
representation for floating-point nunbers,

but also allows for logarithm c encoding (b = 1)

as used by certain early wang nachi nes.

To continue diagnosis, press return
Di agnosis resunes after nmilestone # 7, ... page 5

Programis now RUNNI NG tests on small integers
FAI LURE: violation of 240/3 = 80 or 240/4 = 60 or 240/5 = 48
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Searching for radi x and precision..

Radi x = 2

Cl osest relative separation found is 3.55271368E- 15
Recal cul ating radi x and precision

confirns cl osest relative separation

Radi x confirned.

The nunber of significant digits of radix 2. is 48.00
Test for extra-preci se subexpressions:

SERI QUS DEFECT: disagreenents anong the values X1, Y1, Z1
respectively 0.3552714E- 14, 0. 0000000E+00, 0.3552714E-14
are synptons of inconsistencies introduced by extra-precise
eval uation of allegedly “optimzed” arithnetic
subexpressi ons. Possibly sone part of this

test is inconsistent; PLEASE NOTI FY KARPI NSKI !

That feature is not tested further by this program

To continue diagnosis, press return
Di agnosi s resunes after nmilestone # 30, ... page 6

Subtracti on appears to be normalized as it shoul d.

Checking for guard digits in multiply divide and subtract.
DEFECT: division lacks a guard digit so error can exceed 1 ulp
or 1/3 and 3/9 and 9/27 may di sagree.

SERI OQUS DEFECT: subtraction |acks a guard digit so cancellation is obscured.

To continue diagnosis, press return
Di agnosis resunes after nilestone # 40, ... page 7

Checking for rounding in nultiply, divide and add/subtract:
Multiplication is neither chopped nor correctly rounded.

Di vision is neither chopped nor correctly rounded.

Add/ subtract neither chopped nor correctly rounded.

Sticky bit used incorrectly or not at all

FLAW | ack(s) of guard digits or failure(s) to correctly round or chop
(noted above) count as one flaw in the final tally bel ow.

Does nmultiplication commute? Testing if x*y = y*x for 20 random pairs:
No failure found in 20 randomy chosen pairs.

Runni ng tests of square root..

Testing if sqgrt(x*x) = x for 20 integers x.

Found no di screpanci es.

Sqrt has passed a test for nonotonicity.

Testing whether sqrt is rounded or chopped:

Square root is neither chopped nor correctly rounded.

bserved errors run from -0. 1000000E+01 to 0. 5000000E+00 ul ps.

To continue diagnosis, press return
Di agnosi s resunes after nilestone # 90, ... page 8

Testing powers z"i for snmall integers z and i
Start with 0.**0 .

Is this a programrestart after failure (1)
or a start fromscratch (0) ?

Restarting fromnil estone 90.

To continue diagnosis, press return
Di agnosis resunmes after nilestone # 90, ... page 9
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Testing powers z"i for snmall integers z and i
No di screpanci es found.

Seeki ng underfl ow threshold and m n positive nunber:

FAI LURE: positive expressions can underflow to an allegedly
negative value z0 that prints out as 0. 00000000E+00
but -z0, which should then be positive, isn't; it prints out as

0. 00000000E+00

Si nce compari son deni es PHONYO = O,

eval uating ( PHONYO + PHONYO ) / PHONYO shoul d be safe;

Is this a programrestart after failure (1)

or a start fromscratch (0) ?

Restarting fromm | estone 115.

This is a VERY SERI QUS DEFECT.

To continue diagnosis, press return.
Di agnosi s resunes after mlestone # 115, ... page 10

Smal | est strictly positive nunber found is mnpos = 0. 00000000E+00
Si nce conparison denies M NPCS = 0,

evaluating ( MNPGCS + MNPOS ) / M NPCS shoul d be safe;

Is this a programrestart after failure (1)

or a start fromscratch (0) ?

Restarting fromm | estone 121.

This is a VERY SERI OUS DEFECT.

To continue diagnosis, press return.
Di agnosi s resunes after mlestone # 121, ... page 11

Is this a programrestart after failure (1)

or a start fromscratch (0) ?

Restarting fromm | estone 122.

The underflow threshold is 0. 00000000E+00 , bel ow which
calculation may suffer larger relative error than nerely roundoff.

To continue diagnosis, press return.
Di agnosis resunes after nilestone # 130, ... page 12

since underfl ow occurs below the threshold =
( 2. 00000000E+00)~( -8.19200000E+03) |,
only underflow should afflict the expression
( 2. 00000000E+00)~( -1.63840000E+04) ;
actually calculating it yields
0. 00000000E+00
This conmputed value is O K
Testing x™((x+1)/(x-1)) vs. exp(2) = 0.73890561E+01 as x -> 1.
Accuracy seens adequat e.
Testing powers z"q at four nearly extrene val ues:
No di screpanci es found.

To continue diagnosis, press return.
Di agnosi s resunes after mlestone # 160, ... page 13
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Searching for overflow threshol d:
Is this a programrestart after failure (1)
or a start fromscratch (0) ?
Restarting fromnil estone 161
Can “ z = -y ” overflow? trying it ony = -1.36343517+2465
Seems O K
Overflow threshold is v = R
There is no saturation val ue because
the systemtraps on overfl ow
No overfl ow should be signaled for v*1 =
R
nor for v/l =
R
Any overflow signal separating this * fromone above is a DEFECT.

To continue diagnhosis, press return.
D agnosi s resunmes after mlestone # 190, ... page 14

FLAW unbal anced range; UFLTHR * V = 0. 25000E+00 IS TOO FAR FROM 1.

What nessages and/or val ues does division by zero produce?
About to conpute 1/0...

Is this a programrestart after failure (1)

or a start fromscratch (0) ?

Restarting fromnil estone 211

About to conpute 0/0..

Trying to conmpute 0/0 produces 1.0000000E+00

To continue diagnosis, press return
Di agnosi s resunes after mlestone # 220, ... page 15

The nunber of FAILUREs encountered = 2

The nunber of SERI QUS DEFECTs di scovered = 4

The nunber of DEFECTs di scovered = 1

The nunber of FLAW di scovered = 2

The arithmetic di agnosed has unacceptabl e Serious Defects.

Potentially fatal FAILURE nay have spoiled this program s subsequent di agnoses.

End of Test.
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VAX Output from Run of Paranoia, Single Precision

Is this a programrestart after failure (1)
or a start fromscratch (0) ?
0
A Paranoid Programto Diagnose Floating-point Arithnetic

Si ngl e- Preci sion Version ...
Lest this programstop prematurely, i.e. before displaying
“End of Test”
try to persuade the conputer NOT to term nate execution
whenever an error such as Over/Underfl ow or Division by
Zero occurs, but rather to persevere with a surrogate val ue
after, perhaps, displaying some warning. |f persuasion
avai |l s naught, don't despair but run this program anyway
to see how nany milestones it passes, and then run it
again. It should pick up just beyond the error and
continue. If it does not, it needs further debugging.

Users are invited to hel p debug and augnent this program
so that it will cope with unanticipated and newy found
conpilers and arithmetic pathol ogi es.
To continue diagnosis, press return.
Di agnosi s resunes after nmilestone # 0, ... page 1
Pl ease send suggestions and interesting results to
Ri chard Kar pi nski
Conputer Center U 76
University of California
San Francisco, CA 94143-0704
USA
In doing so, please include the follow ng information:
Preci si on: Single;
Version: 31 July 1986;
Comput er:
Conpi | er:
Optim zation |evel:

O her rel evant conpiler options:

To continue diagnosis, press return.

Di agnosi s resunes after nmilestone # 1, ... page 2



BASI C version (C) 1983 by Prof. W M Kahan
Translated to FORTRAN by T. Quarles and G Tayl or
Modi fied to ANSI 66/ ANSI 77 conpati bl e subset by
Dani el Feenberg and David Gay.

You may redistribute this programfreely if you
acknow edge t he source.

Running this program shoul d reveal these characteristics:
b=radix ( 1, 2, 4, 8, 10, 16, 100, 256, or ... )

p = precision, the nunber of significant b-digits carrled
u2 = b/ b*p one ulp (unit in the last place) of 1.000xxx.
ul = 1/ b”™p one ulp of nunbers a little less than 1.0.

To continue diagnosis, press return
Di agnosi s resunmes after nmilestone # 2, ... page 3

gl, g2, g3 tell whether adequate guard digits are carri ed;

1 =vyes, 0 =no; gl for nmult., g2 for div., g3 for subt.
ri1,r2,r3,r4 tell whether arithmetic is rounded or chopped;
O=chopped, 1=correctly rounded, -1l=sone other rounding;

rl for mult., r2 for div., r3 for add/subt., r4 for sqgrt.

s=1 when a sticky bit is used correctly in rounding; else s=0.
u0 = an underfl ow threshol d.

e0 and z0 tell whether underflow is abrupt, gradual or fuzzy
v = an overflow threshold, roughly.

vO tells, roughly, whether infinity is represented.

Conpari sons are checked for consistency with subtraction

and for contanination by pseudo-zeros.

Sqrt is tested. so is y*x for (nostly) integers X
Extra-preci se subexpressions are reveal ed but not yet tested.
Deci mal - bi nary conversion is not yet tested for accuracy.

To continue diagnosis, press return
Di agnosi s resunes after nmilestone # 3, ... page 4

The program attenpts to discrinnate anong
>FLAWS, like lack of a sticky bit,
>SERI OUS DEFECTs, like lack of a guard digit, and
>FAI LUREs, like 2+2 = 5

Fai l ures may confound subsequent di agnoses.

The di agnostic capabilities of this program go beyond an
earlier programcalled “Machar”, which can be found at the
end of the book “Software Manual for the El ementary Functions”
(1980) by W J. Cody and W Waite. Al though both prograns
try to discover the radix (b), precision (p) and

range (over/underflow thresholds) of the arithnmetic, this
programtries to cope with a wider variety of pathol ogies
and to say how well the arithmetic is inplenented.

The programis based upon a conventional radix
representation for floating-point nunbers,

but also allows for logarithm c encoding (b = 1)

as used by certain early wang nachi nes.



To continue diagnosis, press return
Di agnosi s resunes after nilestone # 7, ... page 5

Programis now RUNNI NG tests on small integers
-1, 0, /2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O K

Searching for radi x and precision..

Radi x = 2

Closest relative separation found is 5.96046448E-08
Recal cul ating radi x and precision

confirns cl osest relative separation

Radi x confirmed.

The nunber of significant digits of radix 2. is 24.00
Test for extra-preci se subexpressions:

Subexpressi ons do not appear to be cal cul ated

with extra precision.

To continue diagnosis, press return
Di agnosi s resunes after nilestone # 30, ... page 6

Subtracti on appears to be normalized as it shoul d.
Checking for guard digits in multiply divide and subtract.
These operations appear to have guard digits as they shoul d.

To continue diagnosis, press return
Di agnosis resunmes after nilestone # 40, ... page 7

Checking for rounding in nultiply, divide and add/subtract:
Mul tiplication appears to be correctly rounded.

Di vi sion appears to be correctly rounded.

Add/ subtract appears to be correctly rounded.

checking for sticky bit:

Sticky bit used incorrectly or not at all

Does nul tiplication commute? Testing if x*y = y*x for 20 random pairs:
No failure found in 20 randomy chosen pairs.

Runni ng tests of square root..

Testing if sgrt(x*x) = x for 20 integers Xx.
Found no di screpanci es.

Sqrt has passed a test for nonotonicity.
Testing whether sqrt is rounded or chopped:
Square root appears to be correctly rounded.

To continue diagnosis, press return
Di agnosi s resunes after nilestone # 90, ... page 8

Testing powers z"i for small integers z and i
Start with 0.**0 .
9%\VITH- F- UNDEXP, undefi ned exponenti ation
user PC 00005B99
%0 RACE- F- TRACEBACK, synbolic stack dunp foll ows
nmodul e name routine name line rel PC abs PC
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0000C328 0000C328
00033B23 00033B23

PWRCMVP PWRCMVP 32 00000019 00005B99
POVNER POVNER 57 00000087 000069C7
SPREC$SMAI N SPREC$SMAI N 257 O0O0OO0O04AE 00004AAE

$ run sprec
Is this a programrestart after failure (1)
or a start fromscratch (0) ?

1
Restarting fromnil estone 90.

To continue diagnosis, press return
Di agnosi s resunes after nilestone # 90, ... page 9

Testing powers z"i for small integers z and i
No di screpanci es found.

Seeki ng underfl ow threshold and min positive nunber:
Smal | est strictly positive nunber found is mnpos = 2.93873588E- 39
Si nce conpari son denies M NPCS = 0,
evaluating ( MNPCS + MNPOS ) / M NPCS shoul d be safe
what the machine gets for ( MNPGCS + MNPOS ) / MNPCS is
0. 2000000E+01
This is O K provided over/underfl ow has not just been signal ed.
FLAW x = 0.40407618E-38 is unequal to z = 0.29387359E- 38
yet x-z yields 0.0000000E+00
Shoul d this not signal underflow, this is a SERI QUS
DEFECT t hat causes confusi on when innocent statements |ike
if (x.eq.z) then ... else ... ( f(x)-f(z) )/ (x-2)
encounter division by zero although actually x/z =1 + 0.37500000E+00
The underflow threshold is 0.29387359E-38 , bel ow whi ch
calculation may suffer larger relative error than nmerely roundoff.

To continue diagnosis, press return
Di agnosi s resunes after mlestone # 130, ... page 10

si nce underfl ow occurs bel ow the threshold =
( 2. 00000000E+00)~( -1.28000000E+02) |,
only underfl ow should afflict the expression
( 2. 00000000E+00)~( -2.56000000E+02) ;
actually calculating it yields
0. 00000000E+00
This conputed value is O K
Testing x"((x+1)/(x-1)) vs. exp(2) = 0.73890557E+01 as x-> 1.
Accuracy seens adequat e.
Testing powers z"q at four nearly extrene val ues:
No di screpanci es found.

To continue diagnhosis, press return.

Di agnosi s resunes after mlestone # 160, ... page 11
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Searching for overflow threshol d:

YSYSTEM F- FLTOVF_F, arithnetic fault, floating overflow at PC=00005EF2
PSL=03C0002A

%90 RACE- F- TRACEBACK, synbolic stack dunp foll ows

nmodul e nane routi ne nane li ne rel PC abs PC
OVERF OVERF 104 0000026A 00005EF2
SPREC$MAI N SPREC$MAI N 276 000004CF 00004ACF

$ run sprec

Is this a programrestart after failure (1)

or a start fromscratch (0) ?

1

Restarting fromnil estone 161

Can “ z = -y " overflow? trying it ony = -8. 50705917E+37
Seenms O K

Overflow threshold is v = 1.70141173E+38

There is no saturation val ue because

the systemtraps on overfl ow

No overflow should be signaled for v*1 =

1.70141173E+38

nor for v/i1 =

1.70141173E+38
Any overfl ow signal separating this * fromone above is a DEFECT.

To continue diagnosis, press return

Di agnosis resunes after nmilestone # 190, ... page 12

What nessages and/ or val ues does division by zero produce?
About to conpute 1/0...

YSYSTEM F- FLTDIV_F, arithnetic fault, floating divide by zero at PC=00009EDC
PSL=03C

00022

%0 RACE- F- TRACEBACK, synbolic stack dunp foll ows

nmodul e name routi ne nane i ne rel PC abs PC
ZERGCS ZERGCS 52 00000074 00009EDC
SPREC$MAI N  SPREC$MAI N 282 000004E0 00004AEO

$ run sprec
Is this a programrestart after failure (1)
or a start fromscratch (0) ?
1
Restarting fromnil estone 211
About to conpute 0/0..
YSYSTEM F- FLTDI V_F, arithmetic fault, floating divide by zero at PC=00009F37
PSL=03C

00022

%0 RACE- F- TRACEBACK, synbolic stack dunp foll ows

nodul e name routi ne nane line rel PC abs PC
ZERCS ZERCS 59 000000CF 00009F37
SPREC$SMAI N SPREC$SMAI N 282 000004E0 OO0004AEO

$ run sprec

Is this a programrestart after failure (1)
or a start fromscratch (0) ?

1

Restarting fromnil estone 212
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To continue diagnosis, press return
Di agnosi s resunes after mlestone # 220, ... page 13

The nunber of FLAW di scovered =1

The arithmetic di agnosed seens Satisfactory though flawed.
End of Test.

FORTRAN STCP
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